03 复杂度分析上:如何分析、统计算法的还行效率和资源消耗?

2019/04/01 posted in  极客-数据结构与算法之美

为什么需要复杂度分析?

事后统计法的局限性:

  1. 测试结果非常依赖测试环境
  2. 测试结果受数据规模的影响很大

我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法。这就是我们今天要讲的时间、空间复杂度分析方法。

大 O 复杂度表示法

所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比。

大 O 时间复杂度表示法,表示代码执行时间随数据规模增长的变化趋势,也叫作渐进时间复杂度,简称时间复杂度。

时间复杂度分析

  1. 只关注循环执行次数最多的一段代码
  2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
  3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

几种常见时间复杂度实例分析

粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)。

下面是几种常见的多项式时间复杂度:

  1. O(1)
    1. 一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。
  2. O(logn)、O(nlogn)
    1. 在采用大 O 标记复杂度的时候,可以忽略系数,即 O(Cf(n)) = O(f(n))。
  3. O(m+n)、O(m*n)
    1. 代码的复杂度由两个数据的规模来决定。

空间复杂度分析

空间复杂度全称就是渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系。

我们常见的空间复杂度就是 O(1)、O(n)、O(n2 ),像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。