17 跳表:为什么Redis一定要用跳表来实现有序集合?

2019/05/17 posted in  极客-数据结构与算法之美

我们只需要对链表稍加改造,就可以支持类似“二分”的查找算法。我们把改造之后的数据结构叫作跳表(Skip list)。

跳表是一种各方面性能都比较优秀的动态数据结构,可以支持快速的插入、删除、查找操作,写起来也不复杂,甚至可以替代红黑树(Red-black tree)。

如何理解“跳表”?

对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是 O(n)。

如果像图中那样,对链表建立一级“索引”,查找起来是不是就会更快一些呢?每两个结点提取一个结点到上一级,我们把抽出来的那一级叫作索引或索引层。

原来如果要查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。

加来一层索引之后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了。

例子2:

原来没有索引的时候,查找 62 需要遍历 62 个结点,现在只需要遍历 11 个结点。

这种链表加多级索引的结构,就是跳表。

用跳表查询到底有多快?

跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。

跳表是不是很浪费内存?

跳表的空间复杂度是 O(n)。

在实际的软件开发中,原始链表中存储的有可能是很大的对象,而索引结点只需要存储关键值和几个指针,并不需要存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间就可以忽略了。

高效的动态插入和删除

跳表这个动态数据结构,不仅支持查找操作,还支持动态的插入、删除操作,而且插入、删除操作的时间复杂度也是 O(logn)。

跳表索引动态更新

当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。

作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。

跳表是通过随机函数来维护前面提到的“平衡性”。

我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。

解答开篇

为什么 Redis 要用跳表来实现有序集合,而不是红黑树?

  1. Redis 中的有序集合是通过跳表来实现的
  2. Redis 中的有序集合支持的核心操作主要有下面这几个:插入一个数据;删除一个数据;查找一个数据;按照区间查找数据(比如查找值在 [100, 356] 之间的数据);迭代输出有序序列。
  3. 按照区间来查找数据这个操作,红黑树的效率没有跳表高。对于按照区间查找数据这个操作,跳表可以做到 O(logn) 的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了。
  4. 其他原因,比如,跳表更容易代码实现。跳表更加灵活,它可以通过改变索引构建策略,有效平衡执行效率和内存消耗。

内容小结

今天我们讲了跳表这种数据结构。跳表使用空间换时间的设计思路,通过构建多级索引来提高查询的效率,实现了基于链表的“二分查找”。跳表是一种动态数据结构,支持快速的插入、删除、查找操作,时间复杂度都是 O(logn)。

跳表的空间复杂度是 O(n)。不过,跳表的实现非常灵活,可以通过改变索引构建策略,有效平衡执行效率和内存消耗。虽然跳表的代码实现并不简单,但是作为一种动态数据结构,比起红黑树来说,实现要简单多了。所以很多时候,我们为了代码的简单、易读,比起红黑树,我们更倾向用跳表。