19 散列表中:如何打造一个工业级水平的散列表?

2019/05/17 posted in  极客-数据结构与算法之美

如何设计散列函数?

首先,散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接的影响到散列表的性能。其次,散列函数生成的值要尽可能随机并且均匀分布,这样才能避免或者最小化散列冲突。

实际工作中,我们还需要综合考虑各种因素。这些因素有关键字的长度、特点、分布、还有散列表的大小等。散列函数各式各样,我举几个常用的、简单的散列函数的设计方法,让你有个直观的感受。

第一个例子就是我们上一节的学生运动会的例子,我们通过分析参赛编号的特征,把编号中的后两位作为散列值。我们还可以用类似的散列函数处理手机号码,因为手机号码前几位重复的可能性很大,但是后面几位就比较随机,我们可以取手机号的后四位作为散列值。这种散列函数的设计方法,我们一般叫作“数据分析法”。
第二个例子就是上一节的开篇思考题,如何实现 Word 拼写检查功能。这里面的散列函数,我们就可以这样设计:将单词中每个字母的ASCll 码值“进位”相加,然后再跟散列表的大小求余、取模,作为散列值。
实际上,散列函数的设计方法还有很多,比如直接寻址法、平方取中法、折叠法、随机数法等。

装载因子过大了怎么办?

针对散列表,当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容我们都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是 0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了 0.4。

如何避免低效地扩容?

我举一个极端的例子,如果散列表当前大小为 1GB,要想扩容为原来的两倍大小,那就需要对 1GB 的数据重新计算哈希值,并且从原来的散列表搬移到新的散列表,听起来就很耗时,是不是?

为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。

当有新数据要插入时,我们将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。

这期间的查询操作怎么来做呢?对于查询操作,为了兼容了新、老散列表中的数据,我们先从新散列表中查找,如果没有找到,再去老的散列表中查找。

如何选择冲突解决方法?

开放寻址法和链表法有什么优势和劣势,又各自适用哪些场景?

  • 当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是 Java 中的ThreadLocalMap使用开放寻址法解决散列冲突的原因。
  • 基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。

工业级散列表举例分析

举例:Java 中的 HashMap 这样一个工业级的散列表,来具体看下,这些技术是怎么应用的。

1.初始大小HashMap
默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。

2.装载因子和动态扩容
最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。

3.散列冲突解决方法
HashMap 底层采用链表法来解决冲突。即使负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响 HashMap 的性能。
于是,在 JDK1.8 版本中,为了对 HashMap 做进一步优化,我们引入了红黑树。而当链表长度太长(默认超过 8)时,链表就转换为红黑树。我们可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。

4.散列函数
散列函数的设计并不复杂,追求的是简单高效、分布均匀。

解答开篇

如何设计的一个工业级的散列函数?

  1. 何为一个工业级的散列表?工业级的散列表应该具有哪些特性?
    • 支持快速的查询、插入、删除操作;
    • 内存占用合理,不能浪费过多的内存空间;
    • 性能稳定,极端情况下,散列表的性能也不会退化到无法接受的情况。
  2. 如何实现这样一个散列表呢?
    • 设计一个合适的散列函数;
    • 定义装载因子阈值,并且设计动态扩容策略;
    • 选择合适的散列冲突解决方法。

内容小结

上一节的内容比较偏理论,今天的内容侧重实战。我主要讲了如何设计一个工业级的散列表,以及如何应对各种异常情况,防止在极端情况下,散列表的性能退化过于严重。我分了三部分来讲解这些内容,分别是:如何设计散列函数,如何根据装载因子动态扩容,以及如何选择散列冲突解决方法。

关于散列函数的设计,我们要尽可能让散列后的值随机且均匀分布,这样会尽可能地减少散列冲突,即便冲突之后,分配到每个槽内的数据也比较均匀。除此之外,散列函数的设计也不能太复杂,太复杂就会太耗时间,也会影响散列表的性能。

关于散列冲突解决方法的选择,我对比了开放寻址法和链表法两种方法的优劣和适应的场景。大部分情况下,链表法更加普适。而且,我们还可以通过将链表法中的链表改造成其他动态查找数据结构,比如红黑树,来避免散列表时间复杂度退化成 O(n),抵御散列碰撞攻击。但是,对于小规模数据、装载因子不高的散列表,比较适合用开放寻址法。

对于动态散列表来说,不管我们如何设计散列函数,选择什么样的散列冲突解决方法。随着数据的不断增加,散列表总会出现装载因子过高的情况。这个时候,我们就需要启动动态扩容。