LRU 缓存淘汰算法
一个缓存(cache)系统主要包含下面这几个操作:
- 往缓存中添加一个数据;
- 从缓存中删除一个数据;
- 在缓存中查找一个数据。
这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是 O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)。具体的结构就是下面这个样子:
散列表通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。
- 首先,我们来看如何查找一个数据。
- 散列表中查找数据的时间复杂度接近 O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。
- 当找到数据之后,我们还需要将它移动到双向链表的尾部。
- 其次,我们来看如何删除一个数据。
- 我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在 O(1) 时间复杂度里找到要删除的结点。
- 因为我们的链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。
- 最后,我们来看如何添加一个数据。
- 我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部。
- 如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。
Redis 有序集合
在跳表那一节,讲到有序集合的操作时,我稍微做了些简化。实际上,在有序集合中,每个成员对象有两个重要的属性,key(键值)和 score(分值)。我们不仅会通过 score 来查找数据,还会通过 key 来查找数据。
所以,如果我们细化一下 Redis 有序集合的操作,那就是下面这样:
- 添加一个成员对象;
- 按照键值来删除一个成员对象;
- 按照键值来查找一个成员对象;
- 按照分值区间查找数据,比如查找积分在 [100, 356] 之间的成员对象;
- 按照分值从小到大排序成员变量;
如果我们仅仅按照分值将成员对象组织成跳表的结构,那按照键值来删除、查询成员对象就会很慢,解决方法与 LRU 缓存淘汰算法的解决方法类似。我们可以再按照键值构建一个散列表,这样按照 key 来删除、查找一个成员对象的时间复杂度就变成了 O(1)。同时,借助跳表结构,其他操作也非常高效。
Java LinkedHashMap
LinkedHashMap 是通过散列表和链表组合在一起实现的。它不仅支持按照插入顺序遍历数据,还支持按照访问顺序来遍历数据。
// 10是初始大小,0.75是装载因子,true是表示按照访问时间排序
HashMap<Integer, Integer> m = new LinkedHashMap<>(10, 0.75f, true);
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);
m.put(3, 26);
m.get(5);
for (Map.Entry e : m.entrySet()) {
System.out.println(e.getKey());
}
这段代码打印的结果是 1,2,3,5。
分析:
在前四个操作完成之后,链表中的数据是下面这样:
m.put(3, 26);
后:
m.get(5);
后:
按照访问时间排序的 LinkedHashMap 本身就是一个支持 LRU 缓存淘汰策略的缓存系统。
LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。
解答开篇 & 内容小结
为什么散列表和链表经常一块使用?
散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。
因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。