“十个二分九个错”。二分查找虽然原理极其简单,但是想要写出没有 Bug 的二分查找并不容易。
变体一:查找第一个值等于给定值的元素
比如下面这样一个有序数组,其中,a[5],a[6],a[7] 的值都等于 8,是重复的数据。我们希望查找第一个等于 8 的数据,也就是下标是 5 的元素。如果我们用上一节课讲的二分查找的代码实现,首先拿 8 与区间的中间值 a[4] 比较,8 比 6 大,于是在下标 5 到 9 之间继续查找。下标 5 和 9 的中间位置是下标 7,a[7] 正好等于 8,所以代码就返回了。
代码实现:
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == 0) || (a[mid - 1] != value)) return mid;
else high = mid - 1;
}
}
return -1;
}
很多人都觉得变形的二分查找很难写,主要原因是太追求第一种那样完美、简洁的写法。
变体二:查找最后一个值等于给定值的元素
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
else low = mid + 1;
}
}
return -1;
}
变体三:查找第一个大于等于给定值的元素
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] >= value) {
if ((mid == 0) || (a[mid - 1] < value)) return mid;
else high = mid - 1;
} else {
low = mid + 1;
}
}
return -1;
}
变体四:查找最后一个小于等于给定值的元素
public int bsearch7(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else {
if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
else low = mid + 1;
}
}
return -1;
}
解答开篇
如何快速定位出一个 IP 地址的归属地?
- 排序。IP 地址可以转化为 32 位的整型数。将起始地址,按照对应的整型值的大小关系,从小到大进行排序。
- 二分查找,在有序数组中,查找最后一个小于等于某个给定值的元素。
内容小结
上一节我说过,凡是用二分查找能解决的,绝大部分我们更倾向于用散列表或者二叉查找树。即便是二分查找在内存使用上更节省,但是毕竟内存如此紧缺的情况并不多。那二分查找真的没什么用处了吗?
实际上,上一节讲的求“值等于给定值”的二分查找确实不怎么会被用到,二分查找更适合用在“近似”查找问题,在这类问题上,二分查找的优势更加明显。比如今天讲的这几种变体问题,用其他数据结构,比如散列表、二叉树,就比较难实现了。
变体的二分查找算法写起来非常烧脑,很容易因为细节处理不好而产生 Bug,这些容易出错的细节有:终止条件、区间上下界更新方法、返回值选择。所以今天的内容你最好能用自己实现一遍,对锻炼编码能力、逻辑思维、写出 Bug free 代码,会很有帮助。