40 | 初识动态规划:如何巧妙解决“双十一”购物时的凑单问题?

2019/11/20 posted in  极客-数据结构与算法之美
  • 动态规划学习路线
  • 0-1 背包问题
  • 0-1 背包问题升级版

动态规划学习路线

动态规划比较适合用来求解最优问题,比如求最大值、最小值等等。它可以非常显著地降低时间复杂度,提高代码的执行效率。

为了让你更容易理解动态规划,我分了三节给你讲解。这三节分别是,初识动态规划、动态规划理论、动态规划实战。

第一节,我会通过两个非常经典的动态规划问题模型,向你展示我们为什么需要动态规划,以及动态规划解题方法是如何演化出来的。实际上,你只要掌握了这两个例子的解决思路,对于其他很多动态规划问题,你都可以套用类似的思路来解决。

第二节,我会总结动态规划适合解决的问题的特征,以及动态规划解题思路。除此之外,我还会将贪心、分治、回溯、动态规划这四种算法思想放在一起,对比分析它们各自的特点以及适用的场景。

第三节,我会教你应用第二节讲的动态规划理论知识,实战解决三个非常经典的动态规划问题,加深你对理论的理解。

0-1 背包问题

对于一组不同重量、不可分割的物品,我们需要选择一些装入背包,在满足背包最大重量限制的前提下,背包中物品总重量的最大值是多少呢?

我们假设背包的最大承载重量是 9。我们有 5 个不同的物品,每个物品的重量分别是 2,2,4,6,3。如果我们把这个例子的回溯求解过程,用递归树画出来,就是下面这个样子:

递归树中的每个节点表示一种状态,我们用(i, cw)来表示。其中,i 表示将要决策第几个物品是否装入背包,cw 表示当前背包中物品的总重量。比如,(2,2)表示我们将要决策第 2 个物品是否装入背包,在决策前,背包中物品的总重量是 2。

从递归树中,你应该能会发现,有些子问题的求解是重复的,比如图中 f(2, 2) 和 f(3,4) 都被重复计算了两次。我们可以借助递归那一节讲的“备忘录”的解决方式,记录已经计算好的 f(i, cw),当再次计算到重复的 f(i, cw) 的时候,可以直接从备忘录中取出来用,就不用再递归计算了,这样就可以避免冗余计算。

private int maxW = Integer.MIN_VALUE; // 结果放到maxW中
private int[] weight = {2,2,4,6,3};  // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,默认值false
public void f(int i, int cw) { // 调用f(0, 0)
  if (cw == w || i == n) { // cw==w表示装满了,i==n表示物品都考察完了
    if (cw > maxW) maxW = cw;
    return;
  }
  if (mem[i][cw]) return; // 重复状态
  mem[i][cw] = true; // 记录(i, cw)这个状态
  f(i+1, cw); // 选择不装第i个物品
  if (cw + weight[i] <= w) {
    f(i+1,cw + weight[i]); // 选择装第i个物品
  }
}

这种解决方法非常好。实际上,它已经跟动态规划的执行效率基本上没有差别。但是,多一种方法就多一种解决思路,我们现在来看看动态规划是怎么做的。

我们把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个物品决策(放入或者不放入背包)完之后,背包中的物品的重量会有多种情况,也就是说,会达到多种不同的状态,对应到递归树中,就是有很多不同的节点。

我们把每一层重复的状态(节点)合并,只记录不同的状态,然后基于上一层的状态集合,来推导下一层的状态集合。我们可以通过合并每一层重复的状态,这样就保证每一层不同状态的个数都不会超过 w 个(w 表示背包的承载重量),也就是例子中的 9。于是,我们就成功避免了每层状态个数的指数级增长。

我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。

第 0 个(下标从 0 开始编号)物品的重量是 2,要么装入背包,要么不装入背包,决策完之后,会对应背包的两种状态,背包中物品的总重量是 0 或者 2。我们用 states[0][0]=true 和 states[0][2]=true 来表示这两种状态。

第 1 个物品的重量也是 2,基于之前的背包状态,在这个物品决策完之后,不同的状态有 3 个,背包中物品总重量分别是 0(0+0),2(0+2 or 2+0),4(2+2)。我们用 states[1][0]=true,states[1][2]=true,states[1][4]=true 来表示这三种状态。

以此类推,直到考察完所有的物品后,整个 states 状态数组就都计算好了。我把整个计算的过程画了出来,你可以看看。图中 0 表示 false,1 表示 true。我们只需要在最后一层,找一个值为 true 的最接近 w(这里是 9)的值,就是背包中物品总重量的最大值。


weight:物品重量,n:物品个数,w:背包可承载重量
public int knapsack(int[] weight, int n, int w) {
  boolean[][] states = new boolean[n][w+1]; // 默认值false
  states[0][0] = true;  // 第一行的数据要特殊处理,可以利用哨兵优化
  if (weight[0] <= w) {
    states[0][weight[0]] = true;
  }
  for (int i = 1; i < n; ++i) { // 动态规划状态转移
    for (int j = 0; j <= w; ++j) {// 不把第i个物品放入背包
      if (states[i-1][j] == true) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) {//把第i个物品放入背包
      if (states[i-1][j]==true) states[i][j+weight[i]] = true;
    }
  }
  for (int i = w; i >= 0; --i) { // 输出结果
    if (states[n-1][i] == true) return i;
  }
  return 0;
}

实际上,这就是一种用动态规划解决问题的思路。我们把问题分解为多个阶段,每个阶段对应一个决策。我们记录每一个阶段可达的状态集合(去掉重复的),然后通过当前阶段的状态集合,来推导下一个阶段的状态集合,动态地往前推进。

那动态规划解决方案的时间复杂度是多少呢?

这个代码的时间复杂度非常好分析,耗时最多的部分就是代码中的两层 for 循环,所以时间复杂度是 O(n*w)。n 表示物品个数,w 表示背包可以承载的总重量。

0-1 背包问题升级版

我们现在引入物品价值这一变量。对于一组不同重量、不同价值、不可分割的物品,我们选择将某些物品装入背包,在满足背包最大重量限制的前提下,背包中可装入物品的总价值最大是多少呢?

这个问题依旧可以用回溯算法来解决。在递归树中,每个节点表示一个状态。现在我们需要 3 个变量(i, cw, cv)来表示一个状态。其中,i 表示即将要决策第 i 个物品是否装入背包,cw 表示当前背包中物品的总重量,cv 表示当前背包中物品的总价值。

我们发现,在递归树中,有几个节点的 i 和 cw 是完全相同的,比如 f(2,2,4) 和 f(2,2,3)。在背包中物品总重量一样的情况下,f(2,2,4) 这种状态对应的物品总价值更大,我们可以舍弃 f(2,2,3) 这种状态,只需要沿着 f(2,2,4) 这条决策路线继续往下决策就可以。

也就是说,对于 (i, cw) 相同的不同状态,那我们只需要保留 cv 值最大的那个,继续递归处理,其他状态不予考虑。

如果用回溯算法,这个问题就没法再用“备忘录”解决了。所以,我们就需要换一种思路,看看动态规划是不是更容易解决这个问题?

我们还是把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个阶段决策完之后,背包中的物品的总重量以及总价值,会有多种情况,也就是会达到多种不同的状态。

我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。不过这里数组存储的值不再是 boolean 类型的了,而是当前状态对应的最大总价值。我们把每一层中 (i, cw) 重复的状态(节点)合并,只记录 cv 值最大的那个状态,然后基于这些状态来推导下一层的状态。

public static int knapsack3(int[] weight, int[] value, int n, int w) {
  int[][] states = new int[n][w+1];
  for (int i = 0; i < n; ++i) { // 初始化states
    for (int j = 0; j < w+1; ++j) {
      states[i][j] = -1;
    }
  }
  states[0][0] = 0;
  if (weight[0] <= w) {
    states[0][weight[0]] = value[0];
  }
  for (int i = 1; i < n; ++i) { //动态规划,状态转移
    for (int j = 0; j <= w; ++j) { // 不选择第i个物品
      if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
    }
    for (int j = 0; j <= w-weight[i]; ++j) { // 选择第i个物品
      if (states[i-1][j] >= 0) {
        int v = states[i-1][j] + value[i];
        if (v > states[i][j+weight[i]]) {
          states[i][j+weight[i]] = v;
        }
      }
    }
  }
  // 找出最大值
  int maxvalue = -1;
  for (int j = 0; j <= w; ++j) {
    if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j];
  }
  return maxvalue;
}

时间复杂度是 O(n*w),空间复杂度也是 O(n*w)。

课后思考

“杨辉三角”不知道你听说过吗?我们现在对它进行一些改造。每个位置的数字可以随意填写,经过某个数字只能到达下面一层相邻的两个数字。

假设你站在第一层,往下移动,我们把移动到最底层所经过的所有数字之和,定义为路径的长度。请你编程求出从最高层移动到最底层的最短路径长度。