41 | 动态规划理论:一篇文章带你彻底搞懂最优子结构、无后效性和重复子问题

2019/11/20 posted in  极客-数据结构与算法之美
  • “一个模型三个特征”理论讲解
    1. 最优子结构
    2. 无后效性
    3. 3. 重复子问题
  • “一个模型三个特征”实例剖析
  • 两种动态规划解题思路总结
    1. 状态转移表法
    2. 状态转移方程法
  • 四种算法思想比较分析

什么样的问题可以用动态规划解决?解决动态规划问题的一般思考过程是什么样的?贪心、分治、回溯、动态规划这四种算法思想又有什么区别和联系?

“一个模型三个特征”理论讲解

一个模型”?它指的是动态规划适合解决的问题的模型。我把这个模型定义为“多阶段决策最优解模型”。

我们一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。然后我们寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。

什么是“三个特征”?它们分别是最优子结构、无后效性和重复子问题。

1. 最优子结构

最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。如果我们把最优子结构,对应到我们前面定义的动态规划问题模型上,那我们也可以理解为,后面阶段的状态可以通过前面阶段的状态推导出来。

2. 无后效性

无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。

3. 重复子问题

不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。

“一个模型三个特征”实例剖析

假设我们有一个 n 乘以 n 的矩阵 w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?

两种动态规划解题思路总结

1. 状态转移表法

一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。

找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法。我们先画出一个状态表。状态表一般都是二维的,所以你可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程,翻译成代码,就是动态规划代码了。

尽管大部分状态表都是二维的,但是如果问题的状态比较复杂,需要很多变量来表示,那对应的状态表可能就是高维的,比如三维、四维。那这个时候,我们就不适合用状态转移表法来解决了。

2. 状态转移方程法

状态转移方程法有点类似递归的解题思路。我们需要分析,某个问题如何通过子问题来递归求解,也就是所谓的最优子结构。根据最优子结构,写出递归公式,也就是所谓的状态转移方程。有了状态转移方程,代码实现就非常简单了。一般情况下,我们有两种代码实现方法,一种是递归加“备忘录”,另一种是迭代递推

状态转移方程是解决动态规划的关键。如果我们能写出状态转移方程,那动态规划问题基本上就解决一大半了,而翻译成代码非常简单。但是很多动态规划问题的状态本身就不好定义,状态转移方程也就更不好想到。

四种算法思想比较分析

如果我们将这四种算法思想分一下类,那贪心、回溯、动态规划可以归为一类,而分治单独可以作为一类,因为它跟其他三个都不大一样。为什么这么说呢?前三个算法解决问题的模型,都可以抽象成我们今天讲的那个多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是,大部分都不能抽象成多阶段决策模型。

回溯算法是个“万金油”。基本上能用的动态规划、贪心解决的问题,我们都可以用回溯算法解决。回溯算法相当于穷举搜索。穷举所有的情况,然后对比得到最优解。不过,回溯算法的时间复杂度非常高,是指数级别的,只能用来解决小规模数据的问题。对于大规模数据的问题,用回溯算法解决的执行效率就很低了。

尽管动态规划比回溯算法高效,但是,并不是所有问题,都可以用动态规划来解决。能用动态规划解决的问题,需要满足三个特征,最优子结构、无后效性和重复子问题。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。

贪心算法实际上是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性(这里我们不怎么强调重复子问题)。

其中,最优子结构、无后效性跟动态规划中的无异。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,我们都选择当前看起来最优的决策,所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。内容小结

内容小结

我首先讲了什么样的问题适合用动态规划解决。这些问题可以总结概括为“一个模型三个特征”。其中,“一个模型”指的是,问题可以抽象成分阶段决策最优解模型。“三个特征”指的是最优子节、无后效性和重复子问题。

然后,我讲了两种动态规划的解题思路。它们分别是状态转移表法和状态转移方程法。其中,状态转移表法解题思路大致可以概括为,回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。状态转移方程法的大致思路可以概括为,找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码

最后,我们对比了之前讲过的四种算法思想。贪心、回溯、动态规划可以解决的问题模型类似,都可以抽象成多阶段决策最优解模型。尽管分治算法也能解决最优问题,但是大部分问题的背景都不适合抽象成多阶段决策模型。