14 | Lock和Condition(上):隐藏在并发包中的管程

2019/12/05 posted in  极客-Java并发实战
  • 再造管程的理由
  • 如何保证可见性
  • 什么是可重入锁
  • 公平锁与非公平锁
  • 用锁的最佳实践

在并发编程领域,有两大核心问题:

  1. 一个是互斥,即同一时刻只允许一个线程访问共享资源;
  2. 另一个是同步,即线程之间如何通信、协作。

这两大问题,管程都是能够解决的。Java SDK 并发包通过 Lock 和 Condition 两个接口来实现管程,其中Lock 用于解决互斥问题Condition 用于解决同步问题

再造管程的理由

我们前面在介绍05 | 一不小心就死锁了,怎么办?的时候,提出了一个破坏不可抢占条件方案,但是这个方案 synchronized 没有办法解决。原因是 synchronized 申请资源的时候,如果申请不到,线程直接进入阻塞状态了,也释放不了线程已经占有的资源。

如果我们重新设计一把互斥锁去解决这个问题,那该怎么设计呢?我觉得有三种方案。

  1. 能够响应中断。synchronized 的问题是,持有锁 A 后,如果尝试获取锁 B 失败,那么线程就进入阻塞状态,一旦发生死锁,就没有任何机会来唤醒阻塞的线程。但如果阻塞状态的线程能够响应中断信号,也就是说当我们给阻塞的线程发送中断信号的时候,能够唤醒它,那它就有机会释放曾经持有的锁 A。这样就破坏了不可抢占条件了。
  2. 支持超时。如果线程在一段时间之内没有获取到锁,不是进入阻塞状态,而是返回一个错误,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。
  3. 非阻塞地获取锁。如果尝试获取锁失败,并不进入阻塞状态,而是直接返回,那这个线程也有机会释放曾经持有的锁。这样也能破坏不可抢占条件。

体现在 API 上,就是 Lock 接口的三个方法:

// 支持中断的API
void lockInterruptibly() 
  throws InterruptedException;
// 支持超时的API
boolean tryLock(long time, TimeUnit unit) 
  throws InterruptedException;
// 支持非阻塞获取锁的API
boolean tryLock();

如何保证可见性

那 Java SDK 里面 Lock 靠什么保证可见性呢?例如在下面的代码中,线程 T1 对 value 进行了 +=1 操作,那后续的线程 T2 能够看到 value 的正确结果吗?

class X {
  private final Lock rtl =
  new ReentrantLock();
  int value;
  public void addOne() {
    // 获取锁
    rtl.lock();  
    try {
      value+=1;
    } finally {
      // 保证锁能释放
      rtl.unlock();
    }
  }
}

Java SDK 里面锁,是利用了 volatile 相关的 Happens-Before 规则。Java SDK 里面的 ReentrantLock,内部持有一个 volatile 的成员变量 state,获取锁的时候,会读写 state 的值;解锁的时候,也会读写 state 的值。根据相关的 Happens-Before 规则:

  1. 顺序性规则:对于线程 T1,value+=1 Happens-Before 释放锁的操作 unlock();
  2. volatile 变量规则:由于 state = 1 会先读取 state,所以线程 T1 的 unlock() 操作 Happens-Before 线程 T2 的 lock() 操作;
  3. 传递性规则:线程 T1 的 value+=1 Happens-Before 线程 T2 的 lock() 操作。

所以说,后续线程 T2 能够看到 value 的正确结果。02 | Java内存模型:看Java如何解决可见性和有序性问题

什么是可重入锁

ReentrantLock,可重入锁,指的是线程可以重复获取同一把锁。如果锁是可重入的,那么线程 可以再次加锁成功;如果锁是不可重入的,那么线程会被阻塞。

可重入函数,指的是多个线程可以同时调用该函数,每个线程都能得到正确结果;同时在一个线程内支持线程切换,无论被切换多少次,结果都是正确的。即线程安全。

公平锁与非公平锁

ReentrantLock 这个类有两个构造函数,一个是无参构造函数,一个是传入 fair 参数的构造函数。fair 参数代表的是锁的公平策略,如果传入 true 就表示需要构造一个公平锁,反之则表示要构造一个非公平锁。

//无参构造函数:默认非公平锁
public ReentrantLock() {
    sync = new NonfairSync();
}
//根据公平策略参数创建锁
public ReentrantLock(boolean fair){
    sync = fair ? new FairSync() 
                : new NonfairSync();
}

在前面08 | 管程:并发编程的万能钥匙中,我们介绍过入口等待队列,锁都对应着一个等待队列,如果一个线程没有获得锁,就会进入等待队列,当有线程释放锁的时候,就需要从等待队列中唤醒一个等待的线程。如果是公平锁,唤醒的策略就是谁等待的时间长,就唤醒谁,很公平;如果是非公平锁,则不提供这个公平保证,有可能等待时间短的线程反而先被唤醒

用锁的最佳实践

《Java 并发编程:设计原则与模式》一书中,推荐的三个用锁的最佳实践,它们分别是:

  1. 永远只在更新对象的成员变量时加锁
  2. 永远只在访问可变的成员变量时加锁
  3. 永远不在调用其他对象的方法时加锁

总结

Java SDK 并发包里的 Lock 接口里面的每个方法,你可以感受到,都是经过深思熟虑的。除了支持类似 synchronized 隐式加锁的 lock() 方法外,还支持超时、非阻塞、可中断的方式获取锁,这三种方式为我们编写更加安全、健壮的并发程序提供了很大的便利。希望你以后在使用锁的时候,一定要仔细斟酌。

除了并发大师 Doug Lea 推荐的三个最佳实践外,你也可以参考一些诸如:减少锁的持有时间、减小锁的粒度等业界广为人知的规则,其实本质上它们都是相通的,不过是在该加锁的地方加锁而已。你可以自己体会,自己总结,最终总结出自己的一套最佳实践来。

课后思考

你已经知道 tryLock() 支持非阻塞方式获取锁,下面这段关于转账的程序就使用到了 tryLock(),你来看看,它是否存在死锁问题呢?

class Account {
  private int balance;
  private final Lock lock
          = new ReentrantLock();
  // 转账
  void transfer(Account tar, int amt){
    while (true) {
      if(this.lock.tryLock()) {
        try {
          if (tar.lock.tryLock()) {
            try {
              this.balance -= amt;
              tar.balance += amt;
            } finally {
              tar.lock.unlock();
            }
          }//if
        } finally {
          this.lock.unlock();
        }
      }//if
    }//while
  }//transfer
}